Abstract

We theoretically study the optical bistability and tristability in plasmonic coated nanospheres containing the nonlinear plasmonic shell and the dielectric core with radial anisotropy. Based on self-consistent mean-field approximation, we establish the relationship between the local field in the shell and the applied incident field, taking into account the Lorentz local field. One or two optical bistabilities and even optical tristability can be observed. Especially, there are two critical geometric parameters between which two optical bistabilities exist. Physically, two optical bistablities result from the excitations of two surface plasmonic resonant modes in the inner and outer interfaces of coated nanospheres, which are well reflected from the spectral representation with two poles. Moreover, the involvement of the radial anisotropy is quite essential to realize the optical tristability. Further discussion on the field-induced tuning of the reflectance reveals the macroscopic properties of this nonlinear optical structure, which provides a potential candidate for designing multi-stable optical devices at the nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.