Abstract

It is known that p-type GeTe-based materials show excellent thermoelectric performance due to the favorable electronic band structure. However, n-type doping in GeTe is of challenge owing to the native Ge vacancies and high hole concentration of about 1021 cm−3. In the present work, the formation energy of cation vacancies of GeTe is increased through alloying PbSe, and further Bi-doping enables the change of carrier conduction from p-type to n-type. As a result, the n-type thermoelectric performance is obtained in GeTe-based materials. A peak zT of 0.34 at 525 K is obtained for (Ge0.6Pb0.4)0.88Bi0.12Te0.6Se0.4. These results highlight the realization of n-type doping in GeTe and pave the way for further optimization of the thermoelectric performance of n-type GeTe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call