Abstract
Materials with a coexistence of magnetic and ferroelectric order (i.e., multiferroics) provide an efficient route for the control of magnetism by electric fields. Unfortunately, a long-sought room temperature multiferroic with strongly coupled ferroelectric and ferromagnetic (or ferrimagnetic) orderings is still lacking. Here, we propose that hydrogen intercalation in antiferromagnetic transition-metal oxides is a promising way to realize multiferroics with strong magnetoelectric coupling. Taking brownmillerite SrCoO_{2.5} as an example, we show that hydrogen intercalated SrCoO_{2.5} displays strong ferrimagnetism and large electric polarization in which the hydroxide acts as a new knob to simultaneously control the magnetization and polarization at room temperature. We expect that ion intercalation will become a general way to design magnetoelectric and spintronic functional materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.