Abstract

The combination of high voltage cathode and metal or graphite anodes provides a feasible way for future high-energy batteries. Among various battery cathodes, lithium cobalt oxide is outstanding for its excellent cycling performance, high specific capacity, and high working voltage and has achieved great success in the field of consumer electronics in the past decades. Recently, demands for smarter, lighter, and longer standby-time electronic devices have pushed lithium cobalt oxide-based batteries to their limits. To obtain high voltage batteries, various methods have been adopted to lift the cutoff voltage of the batteries above 4.45 V (vs Li/Li+). This review summarizes the mechanism of capacity decay of lithium cobalt oxide during cycling. Various modifications to achieve high voltage lithium cobalt oxide, including coating and doping, are also presented. We also extend the discussion of popular modification methods for electrolytes including electrolyte additives, quasi-solid electrolytes, and electr...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.