Abstract
SnSe, a wide-bandgap semiconductor, has attracted significant attention from the thermoelectric (TE) community due to its outstanding TE performance deriving from the ultralow thermal conductivity and advantageous electronic structures. Here, we promoted the TE performance of n-type SnSe polycrystals through bandgap engineering and vacancy compensation. We found that PbTe can significantly reduce the wide bandgap of SnSe to reduce the impurity transition energy, largely enhancing the carrier concentration. Also, PbTe-induced crystal symmetry promotion increases the carrier mobility, preserving large Seebeck coefficient. Consequently, a maximum ZT of ∼1.4 at 793 K is obtained in Br doped SnSe–13%PbTe. Furthermore, we found that extra Sn in n-type SnSe can compensate for the intrinsic Sn vacancies and form electron donor-like metallic Sn nanophases. The Sn nanophases near the grain boundary could also reduce the intergrain energy barrier which largely enhances the carrier mobility. As a result, a maximum ZT value of ∼1.7 at 793 K and an average ZT (ZTave) of ∼0.58 in 300–793 K are achieved in Br doped Sn1.08Se–13%PbTe. Our findings provide a novel strategy to promote the TE performance in wide-bandgap semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.