Abstract

Abrupt phase shift introduced by plasmonic resonances has been frequently used to design subwavelength wave plates for optical integration. Here, with the sandwich structure consisting of a top periodic patterned silver nanopatch, an in-between insulator layer and a bottom thick Au film, we realize a broadband half-wave plate which is capable to cover entire visible light spectrum ranging from 400 to 780 nm. Moreover, when the top layer is replaced with a periodic array of composite super unit cell comprised of two nanopatches with different sizes, the operation bandwidth can be further improved to exceed an octave (400-830 nm). In particular, we demonstrate that the designed half-wave plate can be used efficiently to rotate the polarization state of an ultra-fast light pulse with reserved pulse width. Our result offers a new strategy to design and construct broadband high efficiency phase-response based optical components using patterned metal nanoarray/insulator/metal structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call