Abstract
In this work, we propose a modulation doping strategy for simultaneous achievement of low lattice thermal conductivity and high Seebeck coefficient in the Cu2GeSe3 compound. The Ag and In dual-doping can optimize the hole carrier concentration to balance electrical conductivity and Seebeck coefficient, achieving a high power factor of ∼6.4 μW cm−1 K−2 for the Cu2GeSe3 compound. The Ag point defect makes a great contribution to blocking the propagation of phonons besides the phonon-phonon Umklapp process, yielding a minimum lattice thermal conductivity of ∼0.38 W m–1 K–1. Remarkably, a maximum ZT value of ∼0.97 at 723 K is achieved for Cu1.8Ag0.2Ge0.95In0.05Se3 compound, which is the highest value for the Cu2GeSe3-based systems in the temperature range of 323–723 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.