Abstract

The versatility of quantum gas experiments greatly benefits from the ability to apply variable potentials. Here we describe a method which allows the preparation of potential structures for microcavity photons via spatially selective deformation of optical resonator geometries with a heat-induced mirror surface microstructuring technique. We investigate the thermalization of a two-dimensional photon gas in a dye-filled microcavity composed of the custom surface-structured mirrors at wavelength-scale separation. Specifically, we describe measurements of the spatial redistribution of thermal photons in a coupled double-ridge structure, where photons form a Bose-Einstein condensate in a spatially split ground state, as a function of different pumping geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call