Abstract

Exploring highly efficient electrocatalysts for the oxygen evolution reaction (OER) is of great significance for hydrogen production through water splitting. By means of high-throughput density functional theory (DFT) calculations, we investigated the OER catalytic activity of a series of one-dimensional carbon nanotube (CNT)-based systems containing TMN4 or TMN3 functional units. Through the screening of 3d/4d/5d transition metals (TMs) from Group IVB to Group VIII, eight newly obtained TMNx@CNT (x = 3 and 4) systems were found to exhibit excellent OER activity, with very low overpotentials in the range 0.29-0.51 V, where the Co, Rh, Ir, Ti, Fe, and Ru atoms could be used as active sites. It was found that under the framework of TMN3@CNTs, the pre-adsorption of some species from water dissociation on the relevant TM sites (TM = Ti, Fe, and Ru) could lead to a high OER catalytic activity, which was different from the general situation where OER reactions directly occur on the clean surfaces of the remaining systems with Co/Rh/Ir metal centers. Moreover, the catalytic mechanisms were analyzed in detail. This work can be conducive to obtaining low-cost and high-performance OER single-atom electrocatalysts based on excellent CNT nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.