Abstract

AbstractWe investigate the dynamic properties of the realized volatility of five agricultural commodity futures by employing the high‐frequency data from Chinese markets and find that the realized volatility exhibits both long memory and regime switching. To capture these properties simultaneously, we utilize a Markov switching autoregressive fractionally integrated moving average (MS‐ARFIMA) model to forecast the realized volatility by combining the long memory process with regime switching component, and compare its forecast performances with the competing models at various horizons. The full‐sample estimation results show that the dynamics of the realized volatility of agricultural commodity futures are characterized by two levels of long memory: one associated with the low‐volatility regime and the other with the high‐volatility regime, and the probability to stay in the low‐volatility regime is higher than that in the high‐volatility regime. The out‐of‐sample volatility forecast results show that the combination of long memory with switching regimes improves the performance of realized volatility forecast, and the proposed model represents a superior out‐of‐sample realized volatility forecast to the competing models. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.