Abstract

SummaryWe introduce LASSO‐type regularization for large‐dimensional realized covariance estimators of log‐prices. The procedure consists of shrinking the off‐diagonal entries of the inverse realized covariance matrix towards zero. This technique produces covariance estimators that are positive definite and with a sparse inverse. We name the estimator realized network, since estimating a sparse inverse realized covariance matrix is equivalent to detecting the partial correlation network structure of the daily log‐prices. The large sample consistency and selection properties of the estimator are established. An application to a panel of US blue chip stocks shows the advantages of the estimator for out‐of‐sample GMV asset allocation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.