Abstract

The development of effective catalysts for catalytic reduction of the toxic 4-Nitrophenol (4-NP) into useful 4-Aminophenol (4-AP) has received wide interest. Herein, we report the synthesis of Titanium Metal–Organic Framework (Ti-MOF)/MoS2 hybrid nanostructure as potential catalyst for the reduction of 4-NP. Various characterization tools such as FESEM, TEM, XRD, and XPS have been used to conduct the morphological and structural analysis of the hybrid nano catalyst. The catalytic studies suggest that the as-prepared Ti-MOF, MoS2, and Ti-MOF/MoS2 hybrid nanostructures effectively catalyze the reduction of 4-NP to 4-AP in the presence of NaBH4. The rate constant (Kapp) of MOF/MoS2 hybrid nanostructure is found to be 1.208 min−1, which proves its higher catalytic performance in comparison with the pristine samples. Additionally, its preeminent reusability performance makes MOF/MoS2 hybrid nanostructure to be used as effective and practical catalyst. Through this work, the potential for the heterostructure's high catalytic activity is conversed and a possible reaction mechanism is proposed. Our findings confirm that the hybrid MOF@MoS2 nanoflakes have provided a promising interface for the hydrogenation procedure on the catalytic surface, thereby making it an excellent catalytic material to be further investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.