Abstract
A detector-based spectral irradiance scale has been realized at the National Institute of Standards and Technology (NIST). Unlike the previous NIST spectral irradiance scales, the new scale is generated with filter radiometers calibrated for absolute spectral power responsivity traceable to the NIST high-accuracy cryogenic radiometer instead of with the gold freezing-point blackbody. The calibrated filter radiometers are then used to establish the radiance temperature of a high-temperature blackbody (HTBB) operating near 3,000 K The spectral irradiance of the HTBB is then determined with knowledge of the geometric factors and is used to assign the spectral irradiances of a group of 1,000-W free-electron laser lamps. The detector-based spectral irradiance scale results in the reduction of the uncertainties from the previous source-based spectral irradiance scale by at least a factor of 2 in the ultraviolet and visible wavelength regions. The new detector-based spectral irradiance scale also leads to a reduction in the uncertainties in the shortwave infrared wavelength region by at least a factor of 2-10, depending on the wavelength. Following the establishment of the spectral irradiance scale in the early 1960s, the detector-based spectral irradiance scale represents a fundamental change in the way that the NIST spectral irradiance scale is realized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.