Abstract

Light is believed to exhibit wave–particle duality1 depending on the detecting devices, according to Bohr's complementarity principle2, as has been demonstrated by the ‘delayed-choice experiment’ with classical detecting devices3,4,5,6,7,8,9. A recent proposal10 suggests that the detecting device can also occupy a quantum state, and a quantum version of the delayed-choice experiment can be performed. Here, we experimentally realize the quantum delayed-choice experiment and observe the wave–particle morphing phenomenon of a single photon. We also illustrate, for the first time, the behaviour of the quantum wave–particle superposition state of a single photon. We find that the quantum wave–particle superposition state is distinct from the classical mixture state because of quantum interference between the wave and particle states. Our work reveals the deep relationship between the complementarity principle and the superposition principle, and it may be helpful in furthering understanding of the behaviour of light. Researchers experimentally realize the quantum delayed-choice experiment and show that the quantum wave–particle superposition is clearly different from the classical mixture by comparing interference fringes under various conditions. This work reveals the deep relationship between the complementarity principle and the superposition principle of light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.