Abstract
With the progress of theoretical and applied technologies, the communication system based on the classical encryption is seriously threatened by quantum computing and distributed computing. A communication method that directly loads confidential information on the quantum state, quantum secure direct communication (QSDC), came into being for resisting security threats. Here, we report the first continuous-variable QSDC (CV-QSDC) experimental demonstration for verifying the feasibility and effectiveness of the CV-QSDC protocol based on Gaussian mapping and propose a parameter estimation for signal classification under the actual channels. In our experiment, we provided 4×102 blocks, where each block contains 105 data for direct information transmission. For the transmission distance of 5 km in our experiment, the excess noise is 0.0035 SNU, where SNU represents the unit of shot-noise units. The 4.08×105 bit per second experimental results firmly demonstrated the feasibility of CV-QSDC under the fiber channel. The proposed grading judgment method based on parameter estimation provides a practical and available message processing scheme for CV-QSDC in a practical fiber channel and lays the groundwork for the grading reconciliation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.