Abstract

Using first-principles calculation methods, we study the possibility of realizing quantum anomalous Hall effect in graphene from stable 3\textit{d}-atomic adsorption via charge-compensated \textit{n}-\textit{p} codoping scheme. As concrete examples, we show that long-range ferromagnetism can be established by codoping 3\textit{d} transition metal and boron atoms, but only the Ni codopants can open up a global bulk gap to harbour the quantum anomalous Hall effect. Our estimated ferromagnetic Curie transition temperature can reach over 10 Kelvin for various codoping concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call