Abstract

In this letter, the two-dimensional (2D) spatial-dependent of probe absorption based on biexciton coherence is investigated by monitoring the probe absorption spectra in a Quantum Dot (QD) Nanostructure. We find that due to the quantum interference which is set up by two control pulses that couples to a resonance of the biexciton, the 2D spatial distribution of probe absorption spectrum can be controlled via adjusting the system parameters. We study the effect of controlling parameters of the QD system on spatial distribution of the probe field absorption for two different cases in which the QD interacts with the standing-wave laser fields; first, when two laser fields which couple to a biexciton state, correspond to the two orthogonal standing-wave fields and couple the different transitions. Second, when only one of laser fields correspond to the combination of two orthogonal standing-wave fields, while the other one corresponds to a traveling-wave field. Results exhibit different interesting 2D absorption patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call