Abstract
Parallel experiments are normally used to compare different chemical systems and conditions simultaneously. In the field of high-pressure experimental science, parallel experiments are hard to realize due to very limited reaction chamber size for the generation of high-pressure conditions, especially in diamond anvil cells (DACs). Multiple holes, instead of a single hole, can be drilled into a gasket (i.e., multihole gasket technique) to realize parallel experiments in a DAC. In this study, we conducted a series of systematic calibration experiments on multihole gasket techniques using statistical methods. Multiple (two or three or four) holes 100 µm in diameter were symmetrically drilled into a gasket by a laser drilling instrument with the help of a coded Python program. The pressure deviations among different holes in a gasket at average pressures below 10GPa are constrained to less than 0.2GPa in all calibration experiments at room temperature. We further checked the influences of the gasket material, hole number, pre-indented gasket thickness, and temperature on the pressure deviations among different holes in a gasket. Finally, we applied the multihole gasket technique in a DAC experiment and compared the solubility of calcite in different chemical environments at the same pressure and temperature conditions. The experimental results showed that the multihole gasket technique could be widely applied to study water-mineral interactions at high-P (<10GPa) and high-T (<700°C) conditions because multiple parallel experiments can be efficiently realized simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.