Abstract
Methane-air Continuous Rotating Detonation (CRD) has been firstly achieved in this paper in the hollow chamber with a Laval nozzle, and the diameter of the chamber is just 100 mm. The contraction ratio of the Laval nozzle is a key factor for the CRD realization. CRD can only be obtained when the contraction ratio is no less than 4, but its ER operating range decreases in the increase of contraction ratio from 4 to 10. For all the success cases, the average propagation frequency and velocity are in the ranges of 5.32–5.65 kHz and 1670.48–1774.10 m/s, respectively, and the velocity deficits are less than 10%. Based on the high-speed photography images, the approach of chemiluminescence intensity integral is proposed in this paper, and the propagation characteristics of the flame are analyzed quantitatively. The propagation velocities of the flame and shock wave are agreed well with each other, indicating that the typical feature of detonation wave, i.e., the coupling of the flame and the shock wave, is verified quantitatively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.