Abstract

Type 0092 filamentous bacteria generally do not result in excessive sludge bulking. To take advantage of this, domestic sewage was used to inoculate shortcut nitrification sludge in a sequencing batch reactor (SBR). Sludge settleability, the nitrite accumulation ratio (NAR), pollutant removal characteristics, and the dynamic variation of microbial communities during the system startup and maintenance were investigated. The results indicated that limited filamentous bulking (LFB)with Type 0092 filamentous bacteria combined with shortcut nitrification could be achieved under alternating anoxic and aerobic (four times/cycle;the ratio of anoxic/aerobic was 20 min/60 min) with low dissolved oxygen (DO) content (0.3-0.8 mg·L-1) and a low food/microorganism (F/M) ratio[0.24 kg·(kg·d)-1, COD/MLSS]. The removal rate of COD and total nitrogen (TN) were increased by 13% and 5% when the sludge volume index (SVI) and NAR were maintained at approximately 180 mL·g-1 and 99%, respectively, and aeration consumption was reduced by 62.5% compared to general whole-run nitrification. When the ratio of anoxic/aerobic changed to be 10 min/30 min as alternating times increased to 6 times per cycle, the activity of the nitrite oxidizing bacteria (NOB) recovered, causing shortcut nitrification to be destroyed. In addition, low DO, alternate anoxic/aerobic modes, and low loading rates were the key factors in achieving LFB with Type 0092 filamentous bacteria as the dominant filamentous bacteria. Limited filamentous bulking could not be maintained under low DO and alternating anoxic/aerobic conditions with loading rates above 0.25 kg·(kg·d)-1, COD/MLSS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call