Abstract
In this paper we discuss the problem of the Poisson bracket realization of various Lie algebras in terms of analytic functions of the generators of a given Lie algebra. We pose and solve the problem of realizing the general O(4), O(3, 1), and E(3) algebras in terms of analytic functions of the generators of a prescribed realization of an E(3) algebra. A similar problem is solved for the symmetric tensor realizations of SU(3) and SL(3, R). Related questions are discussed for O(n + 1), O(n, 1), E(n), SU(n), and SL(n, R). We study in some detail the finite canonical transformations realized by the generators of the various groups. The relation of these results to the reconstruction problem is briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.