Abstract

2D van der Waals materials are widely explored for in-plane polarized light detection owing to their distinctive in-plane anisotropic feature. However, most of these polarized light-sensitive devices root in their low symmetry of in-plane structure and work depending on external power sources, which greatly impedes the simplification of integrated devices and sustainable development. Bulk photovoltaic effect (BPVE), which separates photoexcited carriers via built-in electric field without an external power source and shows an angle-dependence on light polarization, is promising for self-powered polarized light detection to break through the restriction of in-plane anisotropy. Herein, a 2D lead-free van der Waals perovskite (Cl-PMA)2 CsAgBiBr7 (1, Cl-PMA = 4-Chlorobenzylamine) is successfully designed through the dimension reduction strategy. 1 exhibits BPVE with an open-circuited photovoltage up to ≈0.5V. Driven by the BPVE, self-powered in-plane polarized light detection with a large polarization ratio of 1.3 is obtained for 1. As far as it is known, the first in-plane polarized light detection in hybrid perovskites based on BPVE is realized here. This work highlights the strategy of designing lead-free hybrid perovskite with BPVE and opens an avenue for exploiting in-plane highly sensitive polarized light detection in 2D van der Waals materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call