Abstract

Narrow gap InGaAs two-dimensional electron gas (2DEG) bilayer samples are fabricated and confirmed to have good electronic qualities as well as strong Rashba-type spin-orbit interactions (SOIs). The 2DEG systems are realized by molecular beam epitaxy in the form of wide quantum wells (QWs) with thicknesses tQW ∼ 40–120 nm modulation doped in both the upper and lower InAlAs barriers. From the Hall measurements, the overall mobility values of μe ∼15 m2/V s are found for the total sheet electron density of ns ∼8 × 1011/cm2, although the ns is distributed asymmetrically as about 1:3 in the upper and lower 2DEGs, respectively. Careful low temperature magneto-resistance analysis gives large SO coupling constants of α ∼20 × 10−12 eV m as well as expected electron effective masses of m*/m0 ∼0.033-0.042 for each bilayer 2DEG spin sub-band. Moreover, the enhancement of α with decrease of tQW is found. The corresponding self-consistent calculation, which suggests the interaction between the bilayer 2DEGs, is carried out and the origin of α enhancement is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.