Abstract
We report the successful fabrication of azobenzene-functionalized self-assembled monolayers (SAMs) exhibiting high and reversible photoswitching between trans and cis states on a flat gold surface. Azobenzene thiols (MeSH and EtSH) containing meta and/or ortho substituents were chosen based on the occupied area per molecule as well as intermolecular interactions between the azobenzene aromatic rings (formation of H-aggregates). Theoretical predictions of the geometrical structures were performed to clarify the correlation between the molecular structure and photoisomerization characteristics in monolayer systems. The striking difference in absorption spectra of a trans-EtSH SAM and a cis-EtSH SAM by alternating UV and visible light irradiation was in good agreement with that in their contact angles for water, strongly indicating that the structural changes were controlled by light wavelength. By contrast, despite there being sufficient free space for each MeSH molecule, the strong tendency of the planar azobenzene units to generate H-aggregates even during cis-MeSH SAM formation lessened the trans-to-cisphotoisomerization yield in a monolayer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.