Abstract
An arbitrary geodesic flow on the projective plane or Klein bottle with an additional, linear in the momentum, first integral is modelled using billiards with slipping on table complexes. The requisite table of a circular topological billiard with slipping is constructed algorithmically. Furthermore, linear integrals of geodesic flows can be reduced to the same canonical integral of a circular planar billiard. Bibliography: 36 titles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.