Abstract

AbstractThe Harten–Lax–van Leer contact (HLLC) and Roe schemes are good approximate Riemann solvers that have the ability to resolve shock, contact, and rarefaction waves. However, they can produce spurious solutions, called shock instabilities, in the vicinity of strong shock. In strong expansion flows, the Roe scheme can admit nonphysical solutions such as expansion shock, and it sometimes fails. We carefully examined both schemes and propose simple methods to prevent such problems. High‐order accuracy is achieved using the weighted average flux (WAF) and MUSCL‐Hancock schemes. Using the WAF scheme, the HLLC and Roe schemes can be expressed in similar form. The HLLC and Roe schemes are tested against Quirk's test problems, and shock instability appears in both schemes. To remedy shock instability, we propose a control method of flux difference across the contact and shear waves. To catch shock waves, an appropriate pressure sensing function is defined. Using the proposed method, shock instabilities are successfully controlled. For the Roe scheme, a modified Harten–Hyman entropy fix method using Harten–Lax–van Leer‐type switching is suggested. A suitable criterion for switching is established, and the modified Roe scheme works successfully with the suggested method. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.