Abstract

We report experimental results from three successful runs of a Bullard-type homopolar disc dynamo. The set-up consisted of a copper disc with a radius of 30 cm and thickness of 3 cm which was placed co-axially beneath a flat, multi-arm spiral coil of the same size and connected to it electrically at the centre and along the circumference by sliding liquid-metal contacts. The magnetic field was measured using Hall probes which were fixed on the top face of the coil. We measured also the radial voltage drop across the coil. When the disc rotation rate reached Ω ≈ 7 Hz , the magnetic field increased steeply approaching B 0 ≈ 40 mT in the central part of the coil. This field was more than two orders of magnitude stronger than the background magnetic field. In the first two runs, the electromagnetic torque braking the disc in the dynamo regime exceeded the breakdown torque of the electric motor driving the disc. As a result, the motor stalled and the dynamo was interrupted. Stalling did not occur in the third run when the driving frequency was set higher and increased faster. We also propose an extended disc dynamo model which qualitatively reproduces the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.