Abstract

Recently, an effective method for realizing linearly separable Boolean functions via Cellular Neural Networks (CNN), called the threshold bifurcation method, was introduced, with a CNN gene bank of four variables established [Chen & Chen, 2005]. Based on this success, the present paper is to further explore the realization of all linearly separable Boolean functions of five variables via CNN with von Neumann neighborhoods. This paper provides: (i) important and essential relations among the genes (or templates) and the offsets of an uncoupled CNN as well as the basis of the binary input vectors set, (ii) a neat truth table of uncoupled CNN with five input variables, (iii) 94572 linearly separable Boolean functions (LSBF) in the family of 225 = 4.294967296 × 109 Boolean functions of five variables, realizable by a single CNN, and (iv) all 94572 CNN linearly separable Boolean genes (LSBG), which can be determined to form the CNN gene bank of five variables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call