Abstract

We report on the realization of wide band gap (5–6 eV), single-phase, metastable, and epitaxial MgxZn1−xO thin-film alloys grown on sapphire by pulsed laser deposition. We found that the composition, structure, and band gaps of the MgxZn1−xO thin-film alloys depend critically on the growth temperature. The structural transition from hexagonal to cubic phase has been observed for (Mg content greater than 50 at. %) (1⩾x⩾0.5) which can be achieved by growing the film alloys in the temperature range of 750 °C to room temperature. Interestingly, the increase of Mg content in the film has been found to be beneficial for the epitaxial growth at relatively low growth temperature in spite of a large lattice mismatch between sapphire and cubic MgZnO alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.