Abstract

Quantum computers are in hot-spot with the potential to handle more complex problems than classical computers can. Realizing the quantum computation requires the universal quantum gate set {T, H, CNOT} so as to perform any unitary transformation with arbitrary accuracy. Here we first briefly review the Majorana fermions and then propose the realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions. Elementary cells consist of a quantum anomalous Hall insulator surrounded by a topological superconductor with electric gates and quantum-dot structures, which enable the braiding operation and the partial exchange operation. After defining a qubit by four chiral Majorana fermions, the single-qubit T and H quantum gates are realized via one partial exchange operation and three braiding operations, respectively. The entangled CNOT quantum gate is performed by braiding six chiral Majorana fermions. Besides, we design a powerful device with which arbitrary two-qubit quantum gates can be realized and take the quantum Fourier transform as an example to show that several quantum operations can be performed with this space-limited device. Thus, our proposal could inspire further utilization of mobile chiral Majorana edge states for faster quantum computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.