Abstract
Among the many proposals for the realization of a quantum computer, holonomic quantum computation is distinguished from the rest as it is geometrical in nature and thus expected to be robust against decoherence. Here we analyze the realization of various quantum gates by solving the inverse problem: Given a unitary matrix, we develop a formalism by which we find loops in the parameter space generating this matrix as a holonomy. We demonstrate that such a one-qubit gate as the Hadamard gate and such two-qubit gates as the controlled-NOT gate and the SWAP gate, and the discrete Fourier transformation can be obtained with a single loop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.