Abstract
Hybrid quantum systems integrate laser-cooled trapped ions and ultracold quantum gases within a single experimental configuration, offering vast potential for applications in quantum chemistry, polaron physics, quantum information processing, and quantum simulations. In this study, we introduce the development and experimental validation of an ion trap chip that incorporates a flat atomic chip trap directly beneath it. This innovative design addresses specific challenges associated with hybrid atom-ion traps by providing precisely aligned and stable components, facilitating independent adjustments of the depth of the atomic trapping potential, and positioning trapped ions. Our findings include the simultaneous loading of the ion trap with linear Yb+ ion crystals and the loading of neutral 87Rb atoms into a mirror magneto-optical trap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.