Abstract

The degree of buckling of two-dimensional (2D) materials can have a dramatic impact on their corresponding electronic structures. Antimonene (β-phase), a new 2D material with air stability and promising electronic properties, has been engineered to adopt flat or two-heights-buckling geometries by employing different supporting substrates for epitaxial growth. However, studies of the antimonene monolayer with a more buckled configuration are still lacking. Here, we report the synthesis of an antimonene monolayer with a three-heights-buckling configuration overlaid on SbAg2 surface alloy-covered Ag(111) by molecular beam epitaxy, in which the underlying surface alloy provides interfacial interactions to modulate the structure of the antimonene monolayer. The atomic structure of the synthesized antimonene has been precisely identified through a combination of low-temperature scanning tunneling microscopy and density functional theory calculations. The successful fabrication of a buckled antimonene monolayer could provide a promising way to modulate the structures of 2D materials for future electronic and optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.