Abstract

The paper studies the sensitivity of the throughput with respect to a mean service rate in a closed queueing network with exponentially distributed service requirements and state-dependent service rates. The study is based on perturbation analysis of queueing networks. A new concept, the realization factor of a perturbation, is introduced. The properties of realization factors are discussed, and a set of equations specifying the realization factors are derived. The elasticity of the steady state throughput with respect to a mean service rate equals the product of the steady state probability and the corresponding realization factor. This elasticity can be estimated by applying a perturbation analysis algorithm to a sample path of the system. The sample path elasticity of the throughput with respect to a mean service rate converges with probability 1 to the elasticity of the steady state throughput. The theory provides an analytical method of calculating the throughput sensitivity and justifies the application of perturbation analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.