Abstract

We perform a systematic analysis of globally consistent D-brane quivers which realize the MSSM and analyze them with respect to their Yukawa couplings. Often, desired couplings are perturbatively forbidden due to the presence of global U(1) symmetries. We investigate the conditions under which D-brane instantons will induce these missing couplings without generating other phenomenological drawbacks, such as R-parity violating couplings or a μ-term which is too large. Furthermore, we systematically analyze which quivers allow for a mechanism that can account for the small neutrino masses and other experimentally observed hierarchies. We show that only a small fraction of the globally consistent D-brane quivers exhibits phenomenology compatible with experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.