Abstract

Molecular excitation with incoherent light is examined using realistic turn-on time scales, and results are compared to those obtained via commonly used sudden turn-on, or pulses. Two significant results are obtained. First, in contrast to prior studies involving sudden turn-on, realistic turn-on is shown to lead to stationary coherences for natural turn-on time scales. Second, the time to reach the final stationary mixed state, known to result from incoherent excitation, is shown to depend directly on the inverse of the molecular energy level spacings, in both sudden and realistic turn-on cases. The S0 → S2/S1 internal conversion process in pyrazine is used as an example throughout. Implications for studies of natural light harvesting systems are noted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call