Abstract

Noble metal-coated core-shell nanoparticles have been applied to a suite of catalytic applications, with the aim of decreasing the noble metal loading while ideally improving their performance. The chemistry and therefore activity at the surface of these materials are intimately related to the accurate description of the core-shell interface. Using density functional theory, we developed a procedure to obtain realistic surface topology descriptions at the heterometallic junction. This procedure was applied to a topical series of catalysts: Ti0.1W0.9C coated in atomically thin monolayers of noble metals. Our quantum chemical calculations provide access to both relevant surface descriptions of these materials and also rationalize several experimental observations. Our general procedure paves the way for the rationalization and prediction of next-generation heterometallic catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call