Abstract
Hydraulic dissolution, driven by carbon dioxide-rich precipitation and runoff, leads to the gradual breakdown and removal of soluble rock materials, creating unique surface and subsurface features. Dissolution is a complex process that is related to numerous factors, and the complete simulation of its process is a challenging problem. On the basis of deep investigation of the theories of geology and rock geomorphology, this paper puts forward a method for simulating the dissolution phenomenon on a rock surface. Around the movement of water, this method carries out dissolution calculations, including processes such as droplet dissolution, water flow, dissolution, deposition, and evaporation. It also considers the lateral dissolution effect of centrifugal force when water flows through bends, achieving a comprehensive simulation of the dissolution process. This method can realistically simulate various typical karst landforms such as karst pits, karst ditches, and stone forests, with interactive simulation efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.