Abstract

A simplified bubble model and its solver optimization method are proposed to solve the problem of poor realistic simulation and complex solutions for bubble-motion behavior in water. Firstly, the internal velocity of the bubble was avoided, and the bubble model was established by only considering the net flux of the inlet and outlet bubbles, which reduced the computational complexity. The bubble constraint was then introduced into the motion equation of water, and the mixed Euler–Lagrangian method was used to solve it. FLIP particles tracked the bubble position, velocity, and deformation, and the mesh updated the vector field. At the same time, the viscosity term was simplified. Finally, it was combined with implicit incompressible SPH particles to achieve the purpose of volume correction. The experimental results show that the method in this paper can present a simulation effect of bubbles in water with rich detail and a realistic sense, whether compared with actual pictures or with existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.