Abstract
The basic results from investigations of certain real problems in the physics of plasticity for single crystals and polycrystalline metal alloys carried out under the direction of the authors are given. The microdeformation patterns and formation of the flow limit in polycrystalline material are treated; the features of the mechanisms of deformation, deformational hardening, and the defect substructure in high-strength metal alloys are characterized. Analyses are carried out for phenomena involving activation of grain boundaries by grain boundary flows of impurity atoms, and experimentally based features of deformation on different structural levels under active extension, creep, and sign-alternating loading conditions. The main attention is given to the development of collective deformation modes. A discussion of some structural aspects of the realization of meso-level plastic flow with different deformation conditions is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.