Abstract

large-scale computational model of the cerebellum granular layer has been adapted to generate long-term synaptic plasticity in response to afferent mossy fiber bursts. A simple learning rule was elaborated in order to link the average granule cell depolarization to LTP and LTD. Briefly, LTP was generated for membrane potentials >-40 mV and LTD for membrane potentials <-40 mV. The result was to generate LTP and stronger excitation in the core of active clusters, which were surrounded by LTD. These changes were accompanied by a faster and stronger spike generation compared to the surround. These results reproduce the experimental observations and provide a valuable and efficient tool for implementing autonomous learning algorithms in the cerebellar neuronal network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.