Abstract
The conventional theory of shell-model effective interactions encounters a divergence in its perturbation expansion owing to intruder states. By enlarging the model space to eliminate the core, and, hence, all core-polarization processes, we circumvent this problem. The perturbation expansion for the effective interaction can then be reasonably expressed in terms of only the Brueckner reaction matrix G in the no-core space plus all folded diagrams. The effective interaction for A = 2 is simply the Brueckner G-matrix. For A > 2 exact results for the eigenenergies are obtained, if the generalized, A-nucleon G matrix can be constructed. For A = 4 to 7, we approximate the A-nucleon G-matrix with the Brueckner G-matrix. Reasonable results can be obtained by treating the starting energy for the G matrix as a variable parameter to fix the binding energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.