Abstract
Geomagnetically Induced Currents (GICs) are one of the main hazards of Space Weather for modern society since they may lead to electricity blackouts over large regions. The awareness and comprehension of GICs on power systems are the keys to dipping into a more resilient and robust energy system.This study aims to understand the real contribution of shield wires (ShW) in GIC simulations. ShW are protective cables against atmospheric discharges for transmission lines and are commonly connected to the ground at substations and, often, at each supporting pylon. Although ShW represent an additional path for GICs, they are in general not considered in simulations. Possible reasons might be the need for more information on ShW parameters from the transmission system operators, as well as the increase in computational time. But another reason has possibly been the conclusions drawn in preliminary studies, showing that the ShW effect on GICs should be small.By applying the equivalent circuit derived in [1], GIC simulations were obtained for the entire Portuguese power grid using realistic parameters for the grid and a 3D conductivity model. Simulations were carried out using an adaptation of GEOMAGICA [2] by calculating a realistic induced electric field and determining GIC magnitudes in each transformer. Also, more tests were done using the analogue circuit simulator software LTSpice to calculate GIC in the power grid using the induced electric field calculated through GEOMAGICA.Results for different geomagnetic storms are presented and compared with GIC measurements at the transformer neutral in a particular substation of the Portuguese power network. [1] Santos, R., Pais, M. A., Ribeiro, J. A., Cardoso, J., Perro, L., & Santos, A. (2022). Effect of shield wires on GICs: Equivalent resistance and induced voltage sources. International Journal of Electrical Power & Energy Systems, 143, 108487.[2] Bailey, R. L., Halbedl, T. S., Schattauer, I., Römer, A., Achleitner, G., Beggan, C. D., ... & Leonhardt, R. (2017, June). Modelling geomagnetically induced currents in midlatitude Central Europe using a thin-sheet approach. In Annales Geophysicae (Vol. 35, No. 3, pp. 751-761). Copernicus GmbH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.