Abstract

The potential of pentapotassium bis(peroxymonosulphate) bis(sulphate) (OXONE) to control biofilms in drinking water distribution systems (DWDS) was evaluated and compared to chlorine disinfection. Mature biofilms of drinking water (DW)-isolated Stenotrophomonas maltophilia were formed using a simulated DWDS with a rotating cylinder reactor (RCR). After 30 min of exposure, OXONE at 10 × minimum bactericidal concentration (MBC) caused a significant 4 log reduction of biofilm culturability in comparison to the unexposed biofilms and a decrease in the number of non-damaged cells below the detection limit (4.8 log cells/cm2). The effects of free chlorine were restricted to approximately 1 log reduction in both biofilm culturability and non-damaged cells. OXONE in synthetic tap water (STW) at 25 ºC was more stable over 40 days than free chlorine in the same conditions. OXONE solution exhibited a disinfectant decrease of about 10% of the initial concentration during the first 9 days, and after this time the values remained stable. Whereas possible reaction of chlorine with inorganic and organic substances in STW contributed to free chlorine depletion of approximately 48% of the initial concentration. Electron paramagnetic resonance (EPR) spectroscopy studies confirmed the presence of singlet oxygen and other free radicals during S. maltophilia disinfection with OXONE. Overall, OXONE constitutes a relevant alternative to conventional DW disinfection for effective biofilm control in DWDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call