Abstract

Offshore wind farms (OWFs) are relatively new installations at sea. Accident records related to vessel collisions with OWFs are insufficient to support a full quantitative risk analysis using traditional probabilistic approaches. This paper aims to develop a semi-qualitative risk model to assess the vessel-turbine collision risks by incorporating Bayesian networks (BN) with evidential reasoning (ER) approaches. First, a BN is trained based on Automatic Identification Systems (AIS) data to characterise real vessel traffic flows, including the detailed information and relationships between traffic flow parameters. Secondly, through synthesising expert judgements by ER, five risk factors influencing the probability and consequence of vessel-turbine collisions are identified (incl. the associated conditional probabilities) in the established BN. Finally, the updated BN with ER input is tested through ten real scenarios and validated by processing a validity framework. This paper pioneers the use of multi-data-driven BNs to characterise traffic flows and assess vessel-turbine collision risk for navigational safety assurance near OWFs. The research findings provide empirical evidence of using ER to supplement BN subjective data to advance its applications in risk analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.