Abstract
We demonstrate the explicit realisation of the ultra-slow roll phase in the framework of the effective field theory of single-field Galileon inflation. The pulsar timing array (PTA) collaboration hints at the scalar-induced gravity waves (SIGW) from the early universe as an explanation for the origin of the observed signal, which, however, leads to an enhancement in the amplitude of the scalar power spectrum giving rise to the overproduction of primordial black holes (PBHs). In the setup under consideration, we examine the generation of SIGW consistent with PTA (NANOGrav15 and EPTA) data, in addition to which we also consider the impact from QCD crossover at the nHz frequencies and address the PBH overproduction issue assuming linear approximations for the over-density without incorporating non-Gaussian effects from the comoving curvature perturbation. The framework is shown to give rise to SIGWs well consistent with the PTA signal with comfortable PBH abundance, 10-3 ≲ fPBH < 1, of near solar-mass black holes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.