Abstract

This paper addresses the problem of simultaneous estimation of different linear deformations, resulting in a global non-linear transformation, between an original object and its broken fragments. A general framework is proposed without using correspondences, where the solution of a polynomial system of equations directly provides the parameters of the alignment. We quantitatively evaluate the proposed algorithm on a large synthetic dataset containing 2D and 3D images, where linear (rigid-body and affine) transformations are considered. We also conduct an exhaustive analysis of the robustness against segmentation errors and the numerical stability of the proposed method. Moreover, we present experiments on 2D real images as well as on volumetric medical images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.