Abstract

The aim of the present study was to compare the effect of realgar nanoparticles and arsenic trioxide (ATO) on viability, DNA damage, proliferation, autophagy and apoptosis in the human melanoma cell lines BOWES and A375. The application of various flow cytometric methods for measurements cell viability, DNA cell cycle, mitochondrial potential, lysosomal activity, and intracellular content of glutathione was used. In addition, quantitative PCR, western blotting and multiplex bead array analyses were applied for evaluation of redox stress, autophagic flux, and cell signaling alterations.The results showed that realgar treatment of studied cells caused modulation of cell proliferation, induced a block in G2/M phase of the cell cycle and altered phosphorylation of IκB, Akt, ERK1/2, p38, and JNK kinases, as well as decreased mitochondrial membrane potential. Additionally, it appeared that induction of cell death by both realgar and ATO was dose-dependent, when lower (0.3 µM) dosage increased lysosomal activity and induced autophagy and higher (1.25 µM) concentration resulted in the appearance of apoptosis, while pan-caspase inhibitor attenuated more efficiently realgar- than ATO-induced cell death. Furthermore, low concentrations of ATO and realgar nanoparticles increased the content of intracellular glutathione and elevated γ-H2AX expression confirmed DNA damage preferentially at higher concentrations of both drugs used. Further analysis revealed slight differences in time-dependent phosphorylation pattern due to both realgar and ATO treatments, while significant differences were noticed between cell lines. In conclusion, realgar nanoparticles and ATO treatment induced dose-dependent activation of autophagy and apoptosis in both melanoma cell lines, when autophagy flux was determined at lower drug concentrations and the switch to apoptosis occurred at higher concentrations of both arsenic forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.