Abstract
The immediacy of social media messages means that it can act as a rich and timely source of real world event information. The detected events can provide a context to observations made by other city information sources such as fixed sensor installations and contribute to building ‘city intelligence’. In this work, we propose a novel unsupervised method to extract real world events that may impact city services such as traffic, public transport, public safety etc., from Twitter streams. We also develop a named entity recognition model to obtain the precise location of the related events and provide a qualitative estimation of the impact of the detected events. We apply our developed approach to a real world dataset of tweets collected from the city of London.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.