Abstract
The purpose of this article is to explore the very general phenomenon that a function between metric spaces has a particular metric property if and only if whenever it is followed in a composition by an arbitrary real-valued Lipschitz function, the composition has this property. The key tools we use are the Efremovič lemma [21] and a theorem of Garrido and Jaramillo [22] that says that a function h between metric spaces is Lipschitz if and only if whenever it is followed by a Lipschitz real-valued function in a composition, the composition is Lipschitz. We also present a streamlined proof of the Garrido-Jaramillo result itself, but one that still relies on their natural continuous linear operator from the Lipschitz space for the target space to the Lipschitz space for the domain. Separately, we include a highly applicable uniform closure theorem that yields the most important uniform density theorems for Lipschitz-type functions as special cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.